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Corrections of Batchelor's spectral law " -  1" of passive scalar fluctuations are 
obtained by taking into account the topological instabilities of small-scale 
vortex sheets: "-4/3" for supercritical and "-5/4"' for subcritical regimes. 
The corresponding fractal dimensions of the scalar interface are D, = 8/3 for 
supercritical and D ,=I I /4  for subcritical regimes. Good agreement with 
experimental data is established. 
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The problem of  scaling laws of passive scalar  f luctuations at the scales of 
the order  of  the Ko lmogorov  scale r/ has been related to the condi t ion  
v>>x, where v is the molecular  viscosity, and  X is the coefficient of 
molecular  diffusion of  a passive scalar. In this case, the field of  velocity 
changes l inearly with the coordinates ,  while the field of  the passive scalar  
O has ra ther  s t rong turbulent  fluctuations. F o r  this s i tuat ion Batchelor 
obta ined  (~) the following scaling law for the spectral  density E e  of  passive 
scalar fluctuations: 

Eo(k  ) oz ( N >  rqk - I  (1) 

where ( N >  = x ( ( V O ) 2 ) ,  r~ = ( v / ( e>)  1/2 (see also ref. 2). 
In recent considera t ions  (3-5) the fractal d imension of  the scalar  inter- 

face D ,  = 3 also has been obta ined  for this case. However,  experimental  
observat ions  described in these papers  give another  value of  D ,  = 2.7 for 
r <  r/. Figure 1 ( taken from ref. 5) shows a plot  of  the logar i thm of  the num- 
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Fig. 1. A log-log plot of the number N(r) of line elements of size r containing the interface 
versus the box size r in the viscous-convective interval of scales (the plane wake of a circular 
cylinderq31). 

ber of"boxes" containing the intersection points from one-dimensional cuts 
through the interface as a function of the box size. The data are from the 
wake experiment. The fractal dimension D,, ~ 2.36 is a characteristic value 
for the Kolmogorov inertial interval r>r / ,  ~5) and the value D~'-~ 2.75 is 
observed at r < r/(the viscous-convective interval(2)). 

The authors of refs. 3-5 relate the difference between the observed 
values of D~ (for r< t / )  and Batchelor's value D,,= 3 to finite-Schmidt- 
number correction. 

Another explanation of the observations can be obtained by taking 
account of local anisotropic singularities of the field of vorticity and helicity 
effects. (6-~0~ 

Indeed, the simultaneous action of the linear velocity field and the 
viscous forces lead to the appearance of concentrated vortex sheets or lines 
at scales of the order of /7. ( 2 " 6 ' 7 )  The vortex sheets should be unstable in 
three-dimensional space and generally these instabilities have topological 
nature. The scaling laws pertaining to the secondary regimes (helical 
traveling waves) are governed by the topological parameter <ldh/dtl> 
[ h = (u curl u) is the helicity ] in the case of supercritical instability, because 
of the spontaneous input of helicity into these helical waves ~9'1~ (for two- 
dimensional motion, h=0 ) .  In the case of subcritical instabilities, the 
helical traveling waves are unstable and the secondary stable regime 
appears as the result of the modulation of these waves (in the self-focusing 
case, there appear helical solitons). Thus at the subcritical instabilities 
stable secondary regimes are governed by the modulation parameter: the 
rate of helicity variation (Id2h/dt21) (cf. ref. 9). At the scales of the order 
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of r/, these parameters cannot be governing for the field of velocity because 
of the strong (direct) influence of the molecular viscosity, while for the field 
of the passive scalar they can. (8) In this case, we obtain the scaling spectral 
law 

Ee(k)  oc <N>< Idh/dtl > -)/3 k -4/3 (2) 

for supercritical regimes, and 

Ee(k) oc <N>(  Id2h/dtZ[ > -I/4 k-5/4 (3) 

for subcritical ones. 
Figure2 (adapted from ref. 4) shows the frequency spectrum of 

concentration fluctuations observed in the wake. The solid straight line is 
drawn for comparison with (2) (the Taylor hypothesis used). The difference 
between power laws ( l)  and (2) [ and (3 ) ]  is hardly discernible in this 
spectrum. This is the common problem of all spectral measurements at 
these scales. 

Vassilicos tl'~ linked the exponent in the power spectral law 
Eo(k) oc k - "  to the fractal dimension D,  (see also ref. 12) 

D ~ = 4 - n  (4) 

One can obtain from (2) and (4) D~= 8/3 for the supercritical case and 
D~= 11/4=2.75 for the subcritical regime (3). Thus we infer from Fig. l 
that the subcritical regime was taking place in this realization. 

It may be interesting to note that in the upper atmosphere, quasi-two- 
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Fig. 2. The frequency spectrum of concentration fluctuaUons in the wake} 4~ 
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dimensional turbulence forms at very large scales/l~ The reasons for quasi- 
two-dimensional geometry of motion in the atmosphere and in the 
viscous-convective interval of scales are very much different. However, the 
topological nature of the above scaling laws provides their universality. 
Figure 3 (adapted from ref. 13) shows horizontal spectra of atmospheric 
traces (ozone) measured in the stratosphere. The straight line is drawn for 
comparison with (2). Figure 4 (adapted from ref. 4) enables one to find the 
value of Dp=D~-1 at analogous atmospheric conditions (cf. Figs. 1 
and 2). The inversion in dispositions of the quasi-two-dimensional and the 
"Kolmogorov" scaling laws in Fig. 1 and 4 has quite clear reasons. 

These instabilities are "large"-scale phenomena/]~ This means that 
they should work (if at all) in a large-scale part of the viscous-convective 
interval, while the Batchelor scaling (1) can be expected in a small-scale 
part of the interval (where the viscosity suppresses the instabilities). Since 
in this (small-scale) part of the interval the effect of molecular diffusion has 
already appeared, experimental observations of Batchelor's spectral power 
law (l)  itself are very difficult. (2'15''6) It must, however, be remarked that 
multifractal measurements, unlike spectral ones, allow one to detach 
subregions with large values of a field. (9) Let us recall that the generalized 
dimension is Dq-3 for scaling (l), in accordance with refs. 3-5. The first 
multifractal measurements in the viscous-convective interval of scales have 
shown that this possibility is real. (5~ 
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Fig. 3. Horizontal spectra of atmospheric traces (ozone). Adapted from ref. 13. 
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Fig. 4. Scaling relations of area A versus perimeter for clouds, allowing one to obtain the 
dimension Dp = D o -  1. Adapted from ref. 14. 
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